Domain decomposition solvers for nonlinear multiharmonic finite element equations

نویسندگان

  • Dylan M. Copeland
  • Ulrich Langer
چکیده

In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Domain Decomposition Solvers for Nonlinear Multiharmonic Finite Element Equations

In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of ...

متن کامل

A Robust Preconditioned MinRes Solver for Time-periodic Eddy Current Problems

This work is devoted to fast and parameter-robust iterative solvers for frequency domain finite element equations, approximating the eddy current problem with harmonic or multiharmonic excitations in time. We construct a preconditioned MinRes solver for the frequency domain equations, that is robust with respect to the discretization parameters as well as all involved “bad” parameters like the ...

متن کامل

Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations

The use of the FEM and BEM in diierent subdomains of a non{overlapping Domain Decomposition (DD) and their coupling over the coupling boundaries (interfaces) brings about several advantages in many practical applications. The paper presents parallel solvers for large-scaled coupled FE{BE{DD equations approximating linear and nonlinear plane magnetic eld problems as well as plane linear elastici...

متن کامل

Robust FETI solvers for multiscale elliptic PDEs

Finite element tearing and interconnecting (FETI) methods are efficient parallel domain decomposition solvers for large-scale finite element equations. In this work we investigate the robustness of FETI methods in case of highly heterogeneous (multiscale) coefficients. Our main application are magnetic field computations where both large jumps and large variation in the reluctivity coefficient ...

متن کامل

Domain Decomposition Based High Performance Parallel Computing

The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010